Переработка полиэтилена в домашних условиях

Содержание

Утилизация полиэтилена (ПВД)

Переработка полиэтилена в домашних условиях

Полиэтилен представляет собой бесцветный полимер, обладающий химическим постоянством  и способностью расплавляться при нагревании. Источником сырья является этиленовый газ. Производство полиэтилена происходит в процессе полимеризации молекул этилена под действием высокого или низкого давления, с образованием гранул размером 2 – 5 мм.Полиэтилен высокого давления (или низкой плотности) обладает мягкой, гибкой структурой. Синтез полимеров производится в трубчатом реакторе или автоклаве. Структура ПВД имеет некоторую особенность: в ней множество ответвлений разной длины. Это свидетельствует о том, что связи слабые, поэтому полиэтилен не отличается прочностью. К тому же данный материал характеризуется повышенной текучестью в расплавленном состоянии и высокой гибкостью.Полимер широко распространен в качестве упаковочного материала. Он применяется при изготовлении продуктовых пакетов, мусорных мешков, контейнеров, оберточной пленки. ПВД обладает большей гибкостью, мягкостью по сравнению с ПНД. Оглавление статьи Воздействие на природу Утилизация полиэтилена Переработка пленки Переработка кабеля Сбор и вывоз отходов Технология переработки ПВД Использование вторсырья (видео)

Воздействие отходов полиэтилена на природу

На производство полимера расходуется около четырех процентов мировой добычи нефти, которая является ограниченным и не возобновляемым природным ресурсом. Огромный недостаток материала в том, что разложение происходит чрезвычайно медленно. Иногда процесс может длиться до 1000 лет в зависимости от условий хранения.

Ветер с легкость разносит пакеты на расстояние до нескольких километров. Так ПВД мусор попадает в реки, океаны, засоряются водосточные трубы. В Индийском городке Мумбай в 2005 году в результате мощного наводнения погибли около 1000 человек.

Администрация города пришла к заключению, что виной этому служили пакеты из супермаркетов. Они забили канализацию и желоба, в результате чего дождевая вода не могла стекать по коммуникациям, проходящим под землей.

Похожая ситуация случалась и в Бангладеше в 1988 и 1998 годах.

Морские исследования свидетельствую о том, что мусор из пластика занимает 25% поверхности воды. В Тихом океане имеется Великий мусорный участок, доля полиэтилена в котором достигает 90%. Данный участок разделен на два пятна, размер каждого из них больше США. Большая свалка ежегодно заметно растет. В ближайшее десятилетие океанский мусор будет угрожать всему Тихоокеанскому региону, а также России.

Организации по защите природы бьют тревогу, поскольку от пластикового мусора каждый год гибнут свыше миллиона птиц и млекопитающих. Они заглатывают пакеты, принимая их за пищу. К примеру, в заливе Тринити в августе 2000 года умер кит- полосатик. В результате вскрытия в желудке были найдены пакеты из магазинов, листы пластмассы, пищевую упаковку, мусорные мешки. Примечательно то, что настоящей пищи в желудке не оказалось.

Утилизация полиэтилена

Защитить природу от загрязнения можно путем вторичной переработки полиэтилена. На сегодняшний день имеются различные способы переработки, в основе которых лежит взаимодействие  с разными добавками (лигнином). Регенерация старой негодной пленки осуществляется методом экструдирования и агломерации. Для переработки жесткого полиэтилена применяются химические реагенты.

Вторичный полиэтилен после завершения срока службы также подвергается переработке.

С экономической точки зрения переработанный ПВД выгоден для изготовления тары для сыпучих и жидких химических веществ, пленки промышленного и бытового назначения, фитингов, канализационных труб, упаковочной сетки, канистр.

Переработка вторичного полиэтилена дает материал для изготовления автомобильных деталей (приборная панель, пластиковая отделка двери), ящиков для непродовольственных товаров.  

Новые технологии способствуют производству вторичного ПВД высокого качества из отходов полиэтилена. Механические и физические свойства переработанного ПВД не хуже первичного. Применение использованного сырья снижает стоимость производства пластмассовых деталей.

В пунктах приема можно сдать использованный негодный полиэтилен по цене от 60 до 200 $ за тонну отхода. Ограждая природу от полиэтиленового мусора, вы извлекаете собственную экономическую выгоду.

Изделия из ПВД и их переработка

Полиэтилен высокого давления – самый распространенный бытовой материал. Это сырье для производства пищевые пакетов и мешков для мусора, пленки, гибких емкостей, гнущихся пластиковых упаковок, некоторых видов пластиковых бутылок.

Переработка полиэтиленовых пакетов

Из переработанных пищевых и мусорных пакетов изготавливают различные пластиковые емкости, пакеты для утилизации отходов, трубы.

Переработка пленки

Использованная полиэтиленовая пленка имеет небольшой срок эксплуатации и практически не изменяет качественного состояния. Поэтому процесс переработки относительно простой. В результате получается материал с похожими свойствами.

Отходы пленки, сильно изменившие свою структуру, перерабатываются немного сложнее. Они применяются при производстве твердых материалов. Чаще всего добавляются примеси, такие как древесные опилки. Данный материал популярен в сельском хозяйстве. Изготовленные из него ведра, бочки и другие изделия имеют особую прочность. Цена вторсырья полиэтилена ниже, поэтому стоимость изготавливаемых изделий соответственно ниже.   

Кабельная изоляция

Пластиковая изоляция кабелей идет на производство строительных материалов и дорожных ограждений. 

Сбор и вывоз отходов

Сбор ПВД отходов осуществляется в контейнеры.  При накоплении определенного объема приезжают машины и увозят сырье на завод.

Сбор полиэтилена осуществляется также в пунктах приема. Эксперты определяют вид ваших отходов, взвешивают и оценивают. Переработка грязной полиэтиленовой пленки может стать причиной получения некачественного сырья. Поэтому первоначально материал моют.

Технология переработки отходов полиэтилена

Этап подготовки:

  • доставка сырья;
  • определение массы;
  • контроль и сортировка.

Основной этап. После подготовки отходы поступают в перерабатывающий цех.

Необходимое оборудование для переработки полиэтилена:

  1. измельчитель полимерных отходов
  2. пневмотранспортная система
  3. экструдер;
  4. фильтрующий элемент;
  5. калибрующая экструзионная головка;
  6. ванна охлаждения;
  7. стренговый гранулятор.     

Полиэтиленовые отходы измельчаются, затем поступают в приемную емкость. В цилиндре экструдера под воздействием нагревательных элементов сырье плавится, сжимается, перемешивается до гомогенного состояния. После фильтрации выдавливается через стренговую головку. Полученные нити отправляются в ванну охлаждения, затем нарезаются и поступают в накопительный бункер или тару для приема.

После завершения данного этапа переработки полиэтилена в гранулы, полимер передают в цех изготовления изделий.

Методы производства товаров из переработанного сырья

1) Литье под давлением представляет собой способ, при котором материал доводят до вязкой расплавленной консистенции. Затем под давлением впрыскивают в форму, в которой формируется изделие. Необходимое оборудование – термопластоавтомат.

  • Подготовленный материал в необходимом количестве загружается в цилиндр. Расплав собирается в материальном цилиндре машины для последующего перемещения в сомкнутую форму (а).
  • Пластикация полимера. Материальный цилиндр соединяется с узлом формы. Пластикатор, двигаясь, толкает в форму расплав (б).
  • Впрыскивание сырья в форму и выдержка под давлением. Расплав заполняет форму, а пластикатор сдвигается (в).
  • Охлаждения и застывание детали в форме (г).
  • Отсоединение формы и извлечение детали (д).

Данным методом изготавливают упаковочные материалы из полиэтилена, штучные изделия, вес которых может варьироваться от нескольких килограммов до долей грамма.   

2) Экструзия – это не останавливающийся технологический процесс, в котором исходное сырье продавливают через фильеру, экструзионную головку. Основной элемент в данном процессе – экструдер. Это оборудование для безостановочной обработки сырья из полиэтилена. Гранулы или агломерат засыпается в приемный бункер (автоматичеки или вручную).

Затем сырье поступает в загрузочную зону шнека, обойдя горловину загрузочной воронки. Дальше передвигается по пластикационному цилиндру. В результате сдавливания, перемешивания и взаимодействия с горячим шнеком и цилиндром сырье плавится и приобретает однородное состояние.

Для получения готового изделия необходимы дополнительные устройства: калибраторный стол, ванны охлаждения, тянущее и отрезное устройства,

  • Зона питания – полимерное сырье из бункера передвигается в межвитковое пространство шнековой зоны I и уплотняется.
  • Зона плавления и пластикации II – соприкасающийся с поверхностью цилиндра материал подплавляется. В небольшом расплавленном слое осуществляются сдвиговые интенсивные изменения. В результате сырье пластицируется, это приводит к смесительному эффекту.
  • Зона дозирования III – продолжается процесс гомогенизации расплавленного полимера. В конце зоны материал полностью гомогенный. Он продавливает через фильтрующие сетки и формирующую головку.   
Читайте также  Заработок на переработке отходов в интернете

Данный метод позволяет получать полиэтиленовые кабели, листовой полиэтилен для строительства и упаковки, трубы.

Давайте начнем заботиться о нашем главном доме, нашей планете. Отнесем полиэтилен не на мусорную свалку, а в пункт приема, который есть в каждом городе. Заботясь о природе, мы, прежде всего, заботимся о нашем здоровье и о будущем наших детей. 

Источник: http://net-othodov.com/stati/utilizacija-poliyetilena-pvd.html

Переработка полиэтилена: технология вторичного использования отходов

Ежегодное потребление полиэтилена в России составляет около 1,7 млн. тонн.

Значительная доля полимера идет на изготовление товаров с ограниченным сроком службы, то есть являющихся источниками отходов.

Следовательно, из года в год вопрос утилизации данного сырья становится все острее.

Полиэтилен представляет большой интерес для бизнеса по переработке по нескольким причинам:

  • эта ниша относительно свободна;
  • большое количество отходов – это доступное сырье и масштабируемость производства;
  • низкая себестоимость обеспечит спрос на вторичные продукты.

Далее будут рассмотрены способы переработки отходов этого полимера и использование вторичных продуктов для производства изделий.

Виды отходов ПЭ

Полиэтилен представляет собой продукт полимеризации этилена (C2H4) – непредельного газообразного углеводорода, первого в олефиновом ряду.

В природе соединение практически не встречается, а в промышленности его получают методами крекинга высокомолекулярных составляющих нефти, дегидрирования этана, а также дегидратации этилового спирта.

Процесс полимеризации представляет собой разрушение одной из связей в молекуле H2C=CH2и соединение мономера -H2C-CH2— в нециклическую цепочку. На протекание процесса оказывают влияние температура, давление и вид используемого катализатора.

В промышленных масштабах синтезируют четыре вида полиэтилена, различающихся структурой и свойствами:

  1. ПВД (полиэтилен высокого давления) – прозрачный и эластичный материал с низким пределом прочности. Молекула вещества имеет большое количество боковых ответвлений, не позволяющих создавать кристаллическую структуру. При температуре 103 – 110 °C полимер переходит в жидкое состояние и имеет высокую текучесть. ПВД применяется для производства упаковочных материалов: пленки, контейнеров и пакетов.
  2. ПНД (полиэтилен низкого давления) – более прочный и жесткий в сравнении с ПВД. Полимерные нити имеют линейную структуру с небольшим количеством ответвлений, благодаря чему при комнатной температуре около 80 % вещества находится в кристаллическом состоянии. Температура плавления составляет 125 – 132 °C. ПНД устойчив к воздействию большинства химикатов. Из него делают мусорные пакеты, емкости для масел, кислот, растворителей, безнапорные трубы.
  3. ПСД (полиэтилен среднего давления) – смесь ПНД и ПСД. Материал сочетает преимущества обоих видов полимеров и используется в производстве пленок, мешков, выдувной толстостенной тары.
  4. ЛПВД (линейный полиэтилен высокого давления)эластичный и мягкий материал с высокой сопротивляемостью разрывам, проколам и другим видам разрушения. Благодаря способности к окрашиванию, большая часть таких полимеров используется для производства стретч-пленки, многослойных материалов и ламинатов.

В последние годы в России широко применяется еще один вид полиэтилена – PEX, или сшитый полиэтилен. Его получают из ПНД.

Под воздействием реагентов или ионизирующего излучения происходит отщепление атомов водорода от полимерных цепей, а свободные связи в углероде тут же взаимодействуют между собой.

В результате получается трехмерная сеть с ярко выраженной кристаллической структурой.

Материал отличается высокой температурой плавления и имеет «память формы».

Из него делают:

  • водопроводные трубы;
  • кабельную изоляцию;
  • термоусадочные материалы.

В России наиболее широкое распространение получили две технологии переработки полиэтилена: производство вторичной гранулы и пиролиз.

Первая предполагает возврат полимера в производство, а вторая – получение энергетически ценных газов и жидкостей, которые могут быть использованы в качестве печного топлива, а также в производстве других видов органических соединений.

Термомеханическая — производство гранул

Термомеханический рециклинг — производство гранул из отходов полиэтилена. Технология не позволяет преобразовывать ПНД в ПВД и наоборот.

Структура и молекулярная масса полимера задаются при его синтезе и остаются неизменными.

Однако для придания вторичному материалу требуемых технологических свойств – жесткости, пластичности или текучести при нагреве – в ПНД добавляют ПВД и наоборот.

Производство гранул из отходов полиэтилена производится по следующему алгоритму:

  1. Сбор и сортировка. Степень готовности к переработке зависит от размеров, состава, степени сохранности и загрязненности сырья. Отходы сортируют механическим способом и вручную.
  2. Измельчение. На высокопроизводительных линиях дробление до нужной фракции выполняется в две стадии: при помощи шредеров и дробилок. Между ними устанавливают гидроциклон или флотационную ванну для отделения твердых и тяжелых частиц.
  3. Промывка. Как правило, промышленное и коммерческие отходы более чистые, чем бытовые, и в некоторых случаях их не промывают. Тара из-под молока, наоборот, может потребовать двойной промывки.
  4. Сушка. Измельченное и промытое сырье поступает в центрифугу, где из него удаляются лишняя влага, а затем в камеру термической сушки.
  5. Агломерация. Процесс протекает под давлением и при повышенной температуре, представляет собой частичное расплавление и спекание полиэтилена в катышки.
  6. Гранулирование. В грануляторе полимер подвергается нагреву до температуры плавления, очистке от твердых и жидких примесей, дегазации. Также происходит перемешивание смеси и усреднение ее состава. Масса под давлением проходит через отверстия – формовочные фильеры. Струйки расплава охлаждаются водой и сжатым воздухом, после чего режутся на готовую гранулу.

В современных линиях по переработке ПВД и ПНД вместо агломераторов используют пласткомпакторы.

В устройствах сырье продавливается роликами через матрицы с отверстиями заданных диаметров, а разогрев происходит за счет действия сил трения.

Пласткомпакторы работают с влажным сырьем. Это позволяет отказаться от второй стадии осушки. При правильно настроенном технологическом процессе сырье не подвергается полному расплавлению, что положительно сказывается на качестве вторичной гранулы.

Переработка полиэтилена сопровождается частичным разрушением полимерных цепочек.

Под действием температуры связи в них ослабевают и могут разрываться при активном перемешивании.

Кроме того, происходит окисление  полимера атмосферным кислородом.

В результате цепочки укорачиваются и снижаются механические свойства гранулята.

Для снижения деструкции специалисты рекомендуют настраивать процесс переработки так, чтобы сырье подвергалось минимальным тепловым и механическим нагрузкам. Замедлить разрушение полимера можно также при помощи специальных добавок-стабилизаторов, связывающих свободные радикалы.

Термохимическая — пиролиз

Многослойные пленки, в том числе с металлизацией, сшитый полиэтилен и отходы с сильной степенью деградации переработать во вторичную гранулу на коммерческих установках оказывается затруднительно. Их подвергают термическому разложению в пиролизных установках.

Продукты пиролиза полиэтилена отличаются высоким качеством и экологической безопасностью, поскольку сырье не содержит соединений серы, фосфора, азота.

Термическое разложение происходит в три этапа:

  1. Отщепление боковых ответвлений.
  2. Растрескивание основной углеродной цепи.
  3. Разложение углеродистых остатков.

Большинство исследователей считает, что механизм протекания пиролиза – это случайная цепная реакция.

Продукты первых двух стадий – это:

  • горючие газы;
  • тяжелые воски;
  • смолы.

На третьей стадии тяжелые углеводородные фракции разлагаются на более легкие.

Большая доля газообразных продуктов относится к олефиновому ряду (этилен, пропилен и т. д.). Также в составе продуктов встречаются циклические соединения – бензол, толуол.

При некоторых процессах образуются водород и метан. Помимо газообразных продуктов в результате пиролиза полиэтилена получают жидкие и конденсируемые фракции, богатые алифатическими углеводородами.

Процесс разложения и состав его продуктов зависят от степени ветвления полиэтилена, его средней молекулярной массы, температуры и типа реактора, используемого катализатора.

Используемые в промышленной переработке установки дают 40 – 70 % газа и 30 – 60% пиролизных масел.

В лабораторных условиях на реакторе непрерывного действия с алюмосиликатным катализатором было получено 80 % бензиновой фракции (C5–C12). Доля газов в общем случае увеличивается с ростом температуры в реакторе.

Наиболее крупные источники сшитого полиэтилена – отходы кабельной изоляции и сантехнических напорных труб.

Помимо пиролизного разложения, его перерабатывают по следующим технологиям:

  1. Размалывание в порошок и использование в качестве наполнителя при производстве гранул из ПВД и ПНД.
  2. Горячая резка с частичным окислением. Дробление при повышенных температурах приводит к разрыву углеродных связей между цепями и увеличению текучести материала.
  3. Гидролиз и алкоголиз. Вода и спирт способны разрывать сшивку. Получаемый на выходе продукт не отличается от синтезированного полиэтилена.
  4. Ультразвуковая обработка. Энергия высокочастотных импульсов позволяет разрушить трехмерную структуру PEX и оставить без изменений главные полимерные цепочки.

Использование отходов переработки сшитого полиэтилена можно встретить в производстве труб для кабельной канализации, низковольтной изоляции и многих бытовых товаров.

Использование вторичной гранулы в производстве готовых изделий

Если соблюдать  технологию переработки, использовать качественное оборудование и ответственно подходить к процессу сортировки, вторичная гранула практически не уступает по качеству первичной.

При изготовлении конечной продукции она может частично или полностью заменять синтезированный полиэтилен.

Компоненты

В производстве используется вторичная гранула ПНД, ПВД, ЛПВД, а также смесевые составы.

В качестве добавок могут использоваться:

  • порошок PEX;
  • полипропилен;
  • каучуки и другие эластомеры.

Технологические процессы

Производство включает в себя такие процессы:

  1. Экструзия. Технология заключается в продавливании расплава через формующую головку, задающую сечение готовой продукции. Этим методом получают оконные профили, пленки, трубу, другие изделия мерной и немерной длины.
  2. Литье под давлением. Технология заключается в заливке расплава в форму с последующим охлаждением и позволяет получать серийную штучную продукцию. Оборудование – термопластавтомат — способно лить полые, вспененные и армированные изделия сложной конфигурации.
Читайте также  Технология переработки шин в крошку

В таблице показано, какие изделия и добавки создаются из разных видов вторичного полиэтилена:

Вид отходов Готовые изделия
Пленка ПВД из промышленных и коммерческих источников Упаковочные материалы
Пленка ПВД, собранная путем сортировки бытовых отходов Гранулы для литья
Стретч Гранулы, добавляемые в другие виды сырья в качестве модификатора
Выдувная тара для пищевых продуктов и бытовой химии Безнапорные трубы
Толстостенные канистры и бочки Безнапорные трубы, древесно-полимерные композиты, геомембраны.
Многослойные пленки Добавки в другие виды сырья
Кабельная изоляция Наполнители для гранул ПВД и ПНД
Пленка сельскохозяйственного назначения Гранулы для добавления в литьевые изделия и новую пленку

Как можно перерабатывать материал в домашних условиях?

К сожалению, переработка полиэтилена в домашних условиях с нулевыми вложениями невозможна.

Однако на рынке есть предложения российских и зарубежных производителей мини-оборудования, которое можно установить в гараже или на даче.

Для начала необязательно организовывать сразу полный цикл переработки. Многие предприятия закупают дробленый полиэтилен различных марок.

Существуют ресурсы, популяризирующие самодельное оборудование для переработки полимеров. Дейв Хаккенс – автор проекта PreciousPlastic – на своем сайте предоставляет чертежи таких устройств и дает видеоуроки. Его технологии и оборудование для рециклинга позволяют создавать готовые изделия в домашних условиях.

по теме

Больше о рециклинге пакетов смотрите в этом видео:

Заключение

Переработка полиэтилена – заманчивая ниша для открытия своего дела. Но стоит учесть, что окупаемость промышленного оборудования, заявленная производителями, составляет 1,5 – 2 года. На практике это возможно только в условиях «идеального» сырья и налаженного сбыта.

Прежде чем решиться на открытие бизнеса по переработке пластика, стоит рассчитать все затраты, исходя из реальных условий.

Источник: https://rcycle.net/plastmassy/polietilen/pererabotka-tehnologii-vtorichnogo-ispolzovaniya-othodov

Переработка пластика в России и Европе

Уровень развития общества можно оценить по способу утилизации отходов. Однако важно помнить не только о сложности технологического процесса, но и о степени его влияния на окружающую среду. В век пластмасс переработка пластика – это еще один виток в эволюции человечества.

Полимерные отходы: специфика утилизации

Специфика переработки пластиковых отходов связана с двумя основными причинами:

  1. разнообразный и сложный химический состав (полистерол, поливинилхлорид, полифенил, полиэтилентерефталат, полипропилен и т.п.);
  2. продолжительный период распада (до 100 лет, а в некоторых случаях – до 500 лет).

Перспектива пластиковых отходов, без переработки — утилизация на полигонах, объемы которых небезграничны. В связи с этим, переработка пластика — одна из самых актуальных проблем для современного общества.

Между тем, пластиковые отходы представляют собой ценное сырье как для самих изделий из пластмассы, так и различных синтетических материалов. И это становится поводом для поиска методов и способов переработки отходов пластика, которые будут экономически выгодны и экологически безопасны для человека и окружающей среды.

Переработка отходов пластмассы: основные способы

Основные задачи переработки пластмасс:— сокращение объемов отходов;— их обезвреживание;— переработка пластика в топливо;— создание сырья для вторичного использования.

На сегодняшний день известны и используются в мире следующие способы переработки пластмассовых отходов.

Механический рециклинг

Способ переработки основан на измельчении отходов пластмасс с целью дальнейшего их вторичного использования. Является классическим для большинства стран Европы и России. Основные этапы переработки:

  1. Сортировка отходов по качеству, составу и степени загрязнения.
  2. Предварительное измельчение в дробилке.
  3. Повторная сортировка полученной субстанции.
  4. Промывка и сушка пластиковых частиц.
  5. Переплавка в специальных печах до получения однородного полимерного расплава.
  6. Изготовление гранулята в экструдере по заданным характеристикам вязкости, плотности и размера.

В результате такой переработки пластмассовых отходов получают сырье для производства искусственного волокна, пластиковых бутылок, упаковочных материалов и полимербетона.
Сложность переработки заключается в необходимости тщательной сортировки и очистки отходов пластика. В ряде случаев, это не всегда возможно, особенно, непосредственно в местах сбора и накопления отходов.

Гидролиз

Способ основан на расщеплении пластмасс водными растворами кислот при действии высоких температур. Процесс гидролиза эффективно развивался в период существования СССР и на сегодняшний день имеет множество модификаций. Их отличие в применяемых катализаторах и количестве этапов гидрирования.

Переработка пластика осуществляется в соответствии со следующим алгоритмом:

  1. Промывка и измельчение отходов.
  2. Охрупчивание полученных хлопьев.
  3. Измельчение до частиц размером в несколько сотен микрон.
  4. Гидролизация субстанции водой в стеклянном реакторе при температурах до 200˚С и небольшом вакууме.
  5. Нейтрализация полученных растворов.
  6. Фильтрация твердых фракций.
  7. Дистилляция полученного водного раствора.
  8. Полимеризация образовавшейся олигомерной смеси.

Продукт переработки – практически полностью очищенные от токсичных веществ гранулы ПЭТ. Переработка отходов пластика таким способом имеет два существенных недостатка.

Это дороговизна процесса, обусловленная большим расходом воды, и большая продолжительность обработки отходов.

К главному достоинству можно отнеси возможность переработки вторичного ПЭТ, в том числе недостаточно очищенного и с примесями других полимеров. Гидролиз также считается достаточно энергоэффективным способом.

Добавление различных катализаторов на основе гликолей и метанола дали развитие способам на основе процесса гликолиза и метанолиза.

Гликолиз

Способ переработки пластика основан на процессе гидролиза, где для деполимеризации отходов используются гликоли. Обязательным условием реакции также являются экстремально высокие температуры, порядка 210-250 ˚С. При этом процесс протекает при атмосферном давлении.

Время реакции и ее скорость зависят от количества добавляемых трансэтерификационных катализаторов. Продукты, получаемые при таком способе переработки пластмасс, зависят от типа используемого гликоля и его концентрации в получаемом расплаве. Это могу быть смеси олигомеров или бис-оксиэтите-рефталат (БОЭТ).

Дальнейшее применение они находят в получении с их использованием полиэфиров и полимеров, а также высокомолекулярных спиртов.

Достоинством гликолиза являются:

  •  отсутствие необходимости тщательной сортировки и очистки исходных отходов;
  • безотходность процесса переработки или с допущением на минимальную долю отходов.

Однако, изготовленные на основе полученного сырья пластмассы непригодны для пищевого использования.

Метанолиз

В основу способа переработки положен процесс глубокой полимеризации (расщепления) пластмасс с помощью метанола. Процесс метанолиза осуществляется в специальных реакторах, где создаются температуры свыше 150 ˚С и обеспечивается давление 1,5 МПа. Для ускорения протекания химических реакций используются катализаторы переэтерификации.

Результатом становится готовое химическое соединение, например, при переработке ПТЭФ — это диметилтерефталат. Продукт переработки пластика весьма специфичен и может использоваться только для дальнейшего получения полиэфиров.

К тому же он относится к опасным веществам: пылевоздушная смесь взрывоопасна, а частицы вызывают раздражение слизистых оболочек глаз, дыхательных путей и кожи.

Сложность метанолиза вызвана, в первую очередь, необходимостью тщательной предварительной очистки сырья и дороговизной процесса деполимеризации. Дополнительное ограничение накладывает необходимость получения метанола, который является продуктом весьма ценных компонентов, таких как природный газ и древесина.

Пиролиз или термическая деструкция

Способ представляет собой контролируемый процесс термического разложения исходного сырья – отходов пластика. Особенность протекания процесса – отсутствие доступа кислорода ко всем составляющим горения. В результате термообработки удается для некоторых полимеров получить исходные мономеры. При этом пластик подлежащий переработке не требует предварительной тщательной сортировки и очистки.

Упрощенно алгоритм работы установки термической деструкции (УТД) можно описать следующим образом:

  1. Сырье загружается в реактор через загрузочное окно бесконтактным способом.
  2. Нагрев внутренней камеры установки осуществляется постепенно с полным контролем внутреннего давления. При этом скорость подъема температуры составляет 2-3 градуса в минуту, а максимальные температуры могут достигать 500˚С.
  3. Начало процесса разложения сопровождается резким увеличением давления в камере, после чего основной нагрев заканчивается и система переходит в рабочий режим.
  4.  Изначально установка работает на топливе из топливного бака, а после стабилизации процесса переходит на выделяемый в результате деструкции пиролизный газ.
  5. Продукты горения из теплообменника поступают в газожидкостный разделитель. В результате жидкое пиролизное топливо и дистиллированная вода сливаются в накопительные емкости, а газообразная фракция подается на горелку. В поддоне реактора остается только зольный остаток.
  6. Терморегуляция системы осуществляется посредством воздушного и водяного охлаждения.

Продуктами переработки пластмасс методом пиролиза являются:— сухой остаток;— пиролизный газ;

— котельное топливо.

Переработка пластика в России XXII века

Специализируясь на переработке органических отходов, компания IPEC выделила метод термической деструкции пластмассовых отходов как наиболее приемлемый и перспективный для России метод утилизации. В тоже время стоит отметить, что и в Европе он эффективно применяется и совершенствуется.

1. Метод пиролиза отвечает нормам и требованиям безопасности обращения с отходами принятым в Европе.

2. Установки термической деструкции универсальны в плане возможности утилизации органических отходов всех видов.

3. Метод является экономически выгодным, т.к. переработка пластика дает ценное топливное сырье, которое подлежит дальнейшему использованию и, соответственно, реализации.

Таким образом, пиролиз является компромиссом между энергоэффективным и относительно экологически чистым способом переработки отходов пластика. Это послужило основанием для организации IPEC собственного производства установок термической деструкции. особенность УТД — финансовая доступность, простота размещения и эксплуатации.

Подробнее об оборудовании Установка термической деструкции (УТД)

Читайте также  Оборудование для переработки пэт бутылок в гранулы

При использовании материала/любой его части ссылка на сайт (www.i-pec.ru) обязательна

Источник: https://i-pec.ru/info/pererabotka-piroliz-plastika-i-plastikovyx-otxodov

Как переработать полиэтиленовые пакеты

  Перевел SaorY для mozgochiny.ru

Доброго дня, мозгочины! Переработка пластика является актуальным вопросом и это мозгоруководство является одним из ответов на него.

Полиэтиленовые пакеты распространены настолько широко, что стали одним из элементов захламления нашего пространства, да и планеты в целом. Но не все так печально, ведь можно своими руками в домашних условиях переработать их в полезные для ваших самоделок листы пластика.

Шаг 2: Материалы и инструменты

  • Полиэтиленовые пакеты (HDPE)
  • Пергамент для выпечки
  • Утюг
  • Противень
  • Ножницы
  • Духовка

Шаг 3: Подготовка пакетов

Для начала копим большое количество пакетов, я накопил около 64 штук, и по мере накопления промываем их и высушиваем.

Следует учесть, что для процесса, описанного в этом мозгоруководстве, нужны пакеты из полиэтилена высокой плотности HDPE, сгодится и полиэтилен низкой плотности LDPE, но он имеет более низкую температуру плавления. Окраска и логотипы на пакетах не играют роли, главное однотипность материала, на что указывает маркировка.

Шаг 4: Нарезка пакетов

Сухие и чистые пакеты разрезаем: отрезаем ручки и дно, тем самым получаем полиэтиленовые кольца, которые также разрезаем по одной боковой стороне. Я решил не использовать стороны пакета с логотипом, поэтому отрезал их, чтобы получить одноцветный мозгопластик.

Шаг 5: Спайка 4-х пакетов

Начинаем процесс спайки полиэтиленовых листов, полученных ранее разрезанием пакетов. Для этого отрываем кусок пергамента для выпечки размером чуть более полиэтиленовых листов и расстилаем его на жаропрочную поверхность, к примеру, на фанеру или OSB. На пергамент выкладываем стопку из 4-х листов полиэтилена, а сверху накрываем еще одним куском пергамента.

Включаем утюг и устанавливаем его на среднюю температуру, а когда он прогреется, начинаем от середины к краям проглаживать стопку листов полиэтилена.

Хорошо, по всей поверхности проглаживаем листы, затем снимаем верхний пергамент и смотрим, как сплавились листы. Если не очень хорошо, то снова укрываем их пергаментом и проглаживаем, но уже на более высокой температуре.

Если в сплавленных листах образовались отверстия, значит температура утюга слишком высокая и ее нужно уменьшить.

Подобрав нужную температуру, аналогичным образом проглаживаем оставшиеся пакеты, делая тем самым четырехслойные листы, которые позднее будем объединять в более толстые.

Шаг 6: Спайка более толстых листов

Теперь нужно спаять четырехслойные листы полиэтилена в более толстые. Путем мозгопроб и ошибок, я пришел к тому, что четырехслойные листы наиболее оптимальны. Меньшее количество слоев плавится с образованием отверстий, а большее количество спаиваются труднее.

Поэтому берем два четырехслойных листы, помещаем их между листами пергамента и проглаживаем на более высокой температуре, также от середины к краям. Чтобы процесс проходил качественнее, при спайке утюг проводим с нажимом. В итоге мы получаем уже восьмислойные листы полиэтилена.

Для того чтобы сделать листы с большим количеством слоев, то на восьмислойный полиэтилен накладываем четырехслойный и проглаживаем его, и т.д. до нужной толщины пластикового брикета. При этом рекомендуется чередовать заднюю и переднюю стороны для спайки, то есть переворачивать после очередной спайки, тем самым избегая деформации брикетов.

Из четырехслойных листов можно сшить легкие плащи и сумки, из восьмислойных пальто или мешок. 12-ти слойные листы и более пригодны для создания рюкзаков и сумок под ноутбук. 24-х слойный полиэтилен можно использовать для создания моделей и поделок, а 64-х слойный для контейнеров и более прочных изделий.

Шаг 7: Запекание полиэтилена

Чтобы повысить качество своих многослойных листов, ведь иногда они плохо склеиваются или пузырятся, можно запечь их в духовке. Для этого понадобится противень, а лучше два, тот же пергамент и несколько кирпичей.

На один противень расстилаем пергамент, на него укладываем полиэтиленовый многослойный мозгобрикет, сверху полиэтилена еще один лист пергамента и еще один противень, на который для утяжеления помещаем кирпич или два.

Полученную конструкцию ставим в духовку на полчаса с температурой 200 градусов Цельсия. Через указанное время вынимаем и обязательно даем остыть, при этом не снимая кирпичи, чтобы избежать деформации.

Когда конструкция остынет до комнатной температуры, снимаем кирпичи, вынимаем запеченный полиэтилен и проверяем его край. Если он полностью спаялся, цельный, то процесс прошел удачно, если он неоднороден, имеются не спаянные места, то возможно придется повторить процесс на более высокой температуре, до 230 градусов.

Шаг 8: Обрезание краев

В процессе спайки края полиэтиленовых брикетов потеряли свою прямолинейную форму, поэтому берем в руки ножницы и придаем им нужную форму прямоугольника.

Шаг 9: Применение

Теперь, когда полиэтиленовые пакеты переработаны, включаем мозготворчество и создаем из брикетов что-то полезное. Кстати, этот переработанный полиэтилен можно использовать при вакуумном формовании и даже для изготовления стержней для клеевого пистолета.
Удачи в творчестве и чистого пространства вокруг вас!

(A-z Source)

Источник: http://mozgochiny.ru/podelki-iz-musora/kak-pererabotat-polietilenovyie-paketyi/

17 фото: Как перерабатывают полиэтиленовые пакеты в России

Наше предприятие перерабатывает не все виды полиэтиленовых пакетов, а только пленку, пакеты, мешки, брак производства стрейч-пленки (так называемая термоусадочная пленка) и ПВД.

ПВД – это полиэтилен высокого давления или, как его еще называют, полиэтилен низкой плотности. Отходы ПВД могут образовываться при непосредственном производстве полиэтиленовой пленки. Много отходов – в магазинах (упаковка бутылок, ящиков, коробов), на стекольных заводах (от упаковки бутылок, банок), на ликеро-водочных и пивных заводах (от упаковки тары или готовой продукции).

Стрейч-пленка – это линейный полиэтилен высокого давления (ЛПВД). Она может сильно растягиваться. Благодаря этому свойству, а также повышенной устойчивости к проколам и разрыву, стрейч-пленку применяют для упаковке различных товаров, в частности на поддонах (паллетах). Отходы стрейч-пленки, в основном, образовываются и накапливаются на складах любого значения, на таможенных терминалах, в логистических центрах и т. д.

А вот популярные пакеты-майки из ПНД (полиэтилен низкого давления) и «биоразлагаемые» пакеты, которые можно встретить, например, в «Азбуке вкуса», мы не перерабатываем. Не подходят также полипропиленовая пленка, ПВХ-пленка, воздушно-пузырчатая пленка, полиамидная пленка, многослойные пленки ПВД+ПП, ПВД+ПА, а также двухсторонние двухцветные пленки. Наконец, мы не принимаем пленку, загрязненную маслами, жирами, пищевыми отходами и ядохимикатами.

Сортировка

Собранный полиэтилен мы везем на склад. Здесь может храниться до 100 тонн отходов пленки, естественно в прессованном виде. На первом этапе сырье проходит тщательную сортировку. Отделяют стрейч от ПВД, выбраковывают неперерабатываемые нашими мощностями виды пленок.

Далее раскладываем по цветам: натуральный, белый, синий, красный, черный и т.д., так как от этого напрямую зависит качество конечного продукта.

Дробилка

После сортировки пакеты определенного цвета пускают в дробилку. В ней на V-образных ножах (в наших кругах такой тип называется еще «ласточкин хвост») пленка измельчается до однородных по размерам частиц. Ножи приводятся в действие электродвигателем.

Мойка

Из дробилки, по пневмотранспортеру, так называемая «дробленка» попадает в мойку. В ней, с добавлением специальных чистящих растворов, «дробленка» очищается от пыли и других неполиэтиленовых включений.

Варка

Следующий этап переработки – это агломерация. В нем происходит так называемая «варка». Оператор загружает чистую «дробленку» в рабочую камеру через загрузочное окно. Сырье по направляющим попадает на вращающийся ротор, измельчается ножами и за счет трения о корпус и между собой разогревается до температуры пластификации. При этом весь объем загруженного сырья становится похожим на кашеобразную массу.

Когда материал становится однородным, в него добавляется «шоковая» вода,  результате чего материал резко охлаждается и спекается в отдельные мелкие шарики неправильной формы. Еще некоторое время агломерат подсушивается при естественной температуре окружающей среды и выгружается в подготовленную тару, чтобы отправиться на заключительный этап. Сам процесс варки длится от 5 до 10 минут.

Грануляция

Процесс грануляции можно сравнить с прокручиванием фарша через мясорубку. Агломерат, который мы получили на предыдущей стадии, загружаем в бункер экструдера. Его так называют, потому что в основе производства гранулы лежит метод экструзии — продавливание расплавленной массы через формующее отверстие.

В общем, наш «фарш» из вываренных пакетов расплавляется под действием нагревателей и давления, создаваемого вращающимся шнеком. Расплав полимера продавливается через фильтр во вращающуюся голову экструдера. Уже из него выходят так называемые нити. Для охлаждения мы пускаем их по водяному рукаву, а затем – в ножи, где режем на однородные гранулы.

Хранение

Гранулы фасуются в чистые полипропиленовые мешки, примерно по 50 кг. Специальных условий хранения не требуется, но желательно, чтобы это было сухое помещение.

Готовое сырье

Полученные гранулы, в зависимости от состава и цвета,  мы продаем. Гранула стрейча натурального цвета идет на производство вторичного стрейча. Гранула ПВД натурального цвета идет на производство вторичной термоусадочной или технической пленки. Цветные гранулы ПВД в основном идут на производство мусорных мешков.

Григорий Собченко

Смотреть далее: Как устроен первый безотходный супермаркет

Источник: https://recyclemag.ru/article/foto-kak-pererabatyvajut-polietilenovye-pakety

Понравилась статья? Поделить с друзьями: